

A new flowsheeting tool for flue gas treating

E.P. van Elk¹⁾, A.R.J. Arendsen¹⁾, G.F. Versteeg²⁾

¹⁾ Procede Gas Treating, P.O. Box 328, 7500 AH, Enschede, The Netherlands ²⁾ University of Groningen, P.O. Box 72, 9700 AB Groningen, The Netherlands

Introduction

A new dedicated acid gas treating process simulator has been developed from scratch. A simplified process scheme is shown below. The simulator however can handle much more complicated systems.

Equilibrium-based unit operations

Rachford-Rice:

 $K_i = \frac{y_i}{1}$

 \boldsymbol{X}_{i}

Separation	Separator, Flash drum, Column	$\sum z_i(1-$
Heat exchangers	Heater/cooler, Heat exchanger	$\left \sum_{i} \frac{1}{1+V(I)} \right $

Currently supported thermodynamic models

- Ideal
- Electrolyte Equation of State (E-EOS):

 $A = A^{IG} + A^{RF} + A^{SR1} + A^{SR2} + A^{LR} + A^{BORN}$

Helmholtz free energy terms:

Ideal Gas, Repulsive Force, Molecules and Ions Short Range Forces, Long Range Ionic Interaction and Born-term

Typical reactive system (Example: Amine-CO₂-H₂S)

Pressure changers	Pump, Turbine, Compressor, Expander, Appendage
Flowsheeting	Inlet, Outlet, Recycle, Mixer, Splitter
Gas treating	Formulator, Thermodynamic model fitting

Rate-based unit-operations: Columns

Column models (continued)

Hydrodynamic models (pressure drop & flooding)

Trays	Dumped packing	Structured packing
Perry	Leva 1992	Bravo 1986
		Bravo 1992

Water dissociation	$2 H_2 O <=> H_3 O^+ + OH^-$	
Bicarbonate formation	$2 H_2O + CO_2 <=> H_3O^+ + HCO_3^-$	
Carbonate formation	$H_2O + HCO_3^- <=> H_3O^+ + CO_3^=$	
H ₂ S dissociation	$H_2O + H_2S <=> H_3O^+ + HS^-$	
Amine protonation	$H_2O + R_3NH^+ <=> H_3O^+ + R_3N$	
Carbamate reversion (prim/sec-amine)	$R_{3}NCOO^{-} + H_{2}O <=> R_{3}N + HCO_{3}^{-}$	

Major thermodynamic and physical properties

Property	Liquid	Vapor	Mixed
Enthalpy	Yes	Yes	Yes
Heat capacity	Yes	Yes	Yes
Density	Yes	Yes	Yes
Viscosity	Yes	Yes	No
Thermal conductivity	Yes	Yes	No
Surface tension	Yes	No	No

New liquid viscosity model \rightarrow (required for accurate rate-based modeling)

Mass transfer models (k_a, k_l, area)

Trays	Dumped packing	Structured packing
Zuiderweg 1982	Onda 1968	Bravo 1985
Bennet 1993	Bravo 1982	Bravo 1992
Scheffe 1987	Billet 1992	Shetty 1997
AIChE 1958		Olujic (Delft model) 2002
Chan 1984		Onda 1968
		Billet 1992

Other models

Screenshot

- Heat transfer coefficients: Chilton-Colburn analogy
- Vapor diffusion coefficients: Fuller / Blanc
- Liquid diffusion coefficients: Wilke-Chang / Versteeg
- **Chemical enhancement of mass transfer:**
 - Higbie penetration model (Rigorous numerical solution)
 - Wellek (Approximate analytical solution)

VLE-results MDEA-CO₂ (Ideal vs E-EOS)

This research is part of the CAPTECH programme. CAPTECH is supported financially by the Dutch Ministry of Economic Affairs under the regulation EOS (Energy Research Subsidy).

More information can be found on www.co2-captech.nl.